Recommended Readings: Timothy Ryan, Ph.D., Monday October 23th, 2017

Monday Lectures

Monday, October 23, 2017  3:45 p.m.

Carson Family Auditorium

Timothy Ryan, Ph.D.

Tri-Institutional Professor

Department of biochemistry

Weill Cornell Medical College

The Cost of Thinking: Metabolic Fitness at the Synapse Level

Recommended Readings:

Jaime de Juan Sanz (2017). The surprising metabolism of “exercising” neurons. Plos Blogs

http://news.cornell.edu/stories/2017/01/brain-cells-mobilize-sugar-response-increased-activity

Ashrafi, Ghazaleh; Ryan, Timothy A. (2017). Glucose metabolism in nerve terminals. CURRENT OPINION IN NEUROBIOLOGY. 45:156-161

Ashrafi, Ghazaleh; Wu, Zhuhao; Farrell, Ryan J.; et al. (2017). GLUT4 Mobilization Supports Energetic Demands of Active Synapses. NEURON. 93 (3): 606-+

Jang, SoRi; Nelson, Jessica C.; Bend, Eric G.; et al. (2016). Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function. NEURON. 90 (2): 278-291

Magistretti, Pierre J.; Allaman, Igor (2015). A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. NEURON. 86 (4): 883-901

Rangaraju, Vidhya; Calloway, Nathaniel; Ryan, Timothy A.(2014). Activity-Driven Local ATP Synthesis Is Required for Synaptic Function. CELL. 156 (4): 825-835

Recommended Readings: Eve Marder, Ph.D., January 23

Friday Lecture Series
Friday, January 23, 2015
3:45 p.m., Caspary Auditorium

Eve Marder, Ph.D.
Victor and Gwendolyn Beinfield Professor of Neuroscience,
Volen National Center for Complex Systems,
Brandeis University

Robustness, Variability, and Neuromodulation in Neurons and Networks

Recommended Readings

Empirical Articles

Caplan, J. S., Williams, A. H., & Marder, E. (2014). Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations. The Journal of Neuroscience, 34(14), 4963–4975. doi:10.1523/JNEUROSCI.0280-14.2014

O’Leary, T., Williams, A. H., Franci, A., & Marder, E. (2014). Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron, 82(4), 809–821. doi:10.1016/j.neuron.2014.04.002

Soofi, W., Goeritz, M. L., Kispersky, T. J., Prinz, A. A., Marder, E., & Stein, W. (2014). Phase maintenance in a rhythmic motor pattern during temperature changes in vivo. Journal of Neurophysiology, 111(12), 2603–2613. doi:10.1152/jn.00906.2013

Review Papers

Marder, E., O’Leary, T., & Shruti, S. (2014). Neuromodulation of circuits with variable parameters: single neurons and small circuits reveal principles of state-dependent and robust neuromodulation. Annual Review of Neuroscience, 37, 329–346. doi:10.1146/annurev-neuro-071013-013958

Recommended Readings: James Rothman, Ph.D. November 7

Friday Lecture Series
Friday, November 7, 2014
3:45 p.m., Caspary Auditorium

James Rothman, Ph.D.
Fergus F. Wallace Professor Biomedical Sciences and Chemistry,
Professor and Chair,
Department of Cell Biology,
Professor of Chemistry,
Yale School of Medicine

The Regulation of Neurotransmitter Release

Recommended Readings

Empirical Articles

McNew, J. A., Parlati, F., Fukuda, R., Johnston, R. J., Paz, K., Paumet, F., … Rothman, J. E. (2000). Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature, 407(6801), 153–159. doi:10.1038/35025000

Söllner, T., Whiteheart, S. W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., & Rothman, J. E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature, 362(6418), 318–324. doi:10.1038/362318a0

Weber, T., Zemelman, B. V, McNew, J. a, Westermann, B., Gmachl, M., Parlati, F., … Rothman, J. E. (1998). SNAREpins: Minimal Machinery for Membrane Fusion. Cell, 92(6), 759–772. doi:10.1016/S0092-8674(00)81404-X

Wilson, D. W., Wilcox, C. A., Flynn, G. C., Chen, E., Kuang, W. J., Henzel, W. J., … Rothman, J. E. (1989). A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature, 339(6223), 355–359. doi:10.1038/339355a0

Review Papers

Rothman, J. E. (2014). The principle of membrane fusion in the cell (Nobel lecture). Angewandte Chemie, 2–21. doi:10.1002/anie.201402380

Südhof, T. C., & Rothman, J. E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science, 323(5913), 474–477. doi:10.1126/science.1161748

Recommended Readings: Erin Schuman, Ph.D.

Friday Lecture Series

Transcriptomes and Proteomes at Synapses

Erin Schuman, Ph.D., director, department of synaptic plasticity, and professor,

Max Planck Institute for Brain Research

 March 22, 2012

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Readings

Bingol, B., & Schuman, E. M. (2005). Synaptic protein degradation by the ubiquitin proteasome system. Current Opinion in Neurobiology, 15(5), 536-541

Sutton, M. A., & Schuman, E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 127(1), 49-58

Sutton, M. A., & Schuman, E. M. (2005). Local translational control in dendrites and its role in long-term synaptic plasticity. Journal of Neurobiology, 64(1), 116-131

Sutton, M. A., & Schuman, E. M. (2009). Partitioning the synaptic landscape: Distinct microdomains for spontaneous and spike-triggered neurotransmission. Science Signaling, 2(65)

Tai, H. -., & Schuman, E. M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nature Reviews Neuroscience, 9(11), 826-838

 

Recommended Readings: Kang Shen, Ph.D.

Friday Lecture Series

Extracellular and Intracellular Mechanisms of Synapse Patterning in C. elegans

Kang Shen, Ph.D., M.P.H., associate professor,

department of biological sciences, Stanford University

 February 22, 2012

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Readings

Allen, P. B., Sgro, A. E., Chao, D. L., Doepker, B. E., Edgar, J. S., Shen, K., & Chiu, D. T. (2008). Single-synapse ablation and long-term imaging in live C. elegans. Journal of Neuroscience Methods, 173(1), 20-26

Crane, M. M., Stirman, J. N., Ou, C. -., Kurshan, P. T., Rehg, J. M., Shen, K., & Lu, H. (2012). Autonomous screening of C. elegans identifies genes implicated in synaptogenesis. Nature Methods, 9(10), 977-980

Klassen, M. P., Wu, Y. E., Maeder, C. I., Nakae, I., Cueva, J. G., Lehrman, E. K., . . . Shen, K. (2010). An arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron, 66(5), 710-723

Maeder, C. I., & Shen, K. (2011). Genetic dissection of synaptic specificity. Current Opinion in Neurobiology, 21(1), 93-99

Margeta, M. A., Wang, G. J., & Shen, K. (2009). Clathrin adaptor AP-1 complex excludes multiple postsynaptic receptors from axons in C. elegans. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1632-1637

 

Recommended Readings: Michael E. Greenberg, Ph.D.

Friday Lecture Series

Jerry A. Weisbach Memorial Lecture

Signaling Networks That Regulate Synapse Development and Cognitive Function

Michael E. Greenberg, Ph.D., chair, department of neurobiology;

Nathan Marsh Pusey Professor of Neurobiology,

Harvard Medical School

 November 16, 2012

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Readings

Cohen, S., H. Gabel, M. Hemberg, A. N. Hutchinson, L. A. Sadacca, D. H. Ebert, D. A. Harmin, et al. 2011. Genome-Wide Activity-Dependent MeCP2 Phosphorylation Regulates Nervous System Development and Function. Neuron 72 (1): 72-85

Cohen, S. and M. E. Greenberg. 2008. Communication between the Synapse and the Nucleus in Neuronal Development, Plasticity, and Disease. Annual Review of Cell and Developmental Biology. Vol. 24

Greenberg, M. E., B. Xu, B. Lu, and B. L. Hempstead. 2009. New Insights in the Biology of BDNF Synthesis and Release: Implications in CNS Function. Journal of Neuroscience 29 (41): 12764-12767

Greer, P. L., R. Hanayama, B. L. Bloodgood, A. R. Mardinly, D. M. Lipton, S. W. Flavell, T. -K Kim, et al. 2010. The Angelman Syndrome Protein Ube3A Regulates Synapse Development by Ubiquitinating Arc. Cell 140 (5): 704-716

Margolis, S. S., J. Salogiannis, D. M. Lipton, C. Mandel-Brehm, Z. P. Wills, A. R. Mardinly, L. Hu, et al. 2010. EphB-Mediated Degradation of the RhoA GEF Ephexin5 Relieves a Developmental Brake on Excitatory Synapse Formation. Cell 143 (3): 442-455

 

Genetic Basis of Brain Diseases

Scientists have isolated a set of proteins that accounts for over 130 brain diseases, including diseases such as Alzheimer’s disease, Parkinson’s disease, epilepsies and forms of autism and learning disability. The team showed that the protein machinery has changed relatively little during evolution, suggesting that the behaviors governed by and the diseases associated with these proteins have not changed significantly over many millions of years. The findings open several new paths toward tackling these diseases.   In the brain synapses have a set of proteins, which, like the components of an engine, bind together to build a molecular machine called the postsynaptic density — also known as the PSD. 

A team of scientists, led by Professor Seth Grant at the Wellcome Trust Sanger Institute and Edinburgh University, have extracted the PSDs from synapses of patients undergoing brain surgery and discovered 1461 proteins, each one encoded by a different gene. This has made it possible, for the first time, to systematically identify the diseases that affect human synapses and provides a new way to study the evolution of the brain and behaviour.    Read more in the Dec 19 issue of Nature Neuroscience.

Recommended Readings: Shai Shaham, Ph.D.

Friday Lecture Series

“Adventures at the Sensory Synapse”

 Shai Shaham, Ph.D.

Associate Professor and Head, Laboratory of Developmental Genetics

The Rockefeller University

March 13, 2009

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Articles:

Bacaj, T., M. Tevlin, Y. Lu, and S. Shaham. 2008. Glia are essential for sensory organ function in C. elegans. Science. 322(5902):744-747.

 

Heiman, M. G., and S. Shaham. 2007. Ancestral roles of glia suggested by the nervous system of Caenorhabditis elegans. Neuron Glia Biology. 3(1):55-61. (Request copy of article from the Markus Library)

 

Shaham, S. 2006. Glia-neuron interactions in the nervous system of Caenorhabditis elegans. Current Opinion in Neurobiology. 16(5): 522-528.

 

Shaham, S. 2005. Glia-neuron interactions in nervous system function and development. Current Topics in Developmental Biology. 69:39-66.

 

Wang, Y., A. Apicella Jr., S. -K Lee, M. Ezcurra, R. D. Slone, M. Goldmit, W. R. Schafer, S. Shaham, M. Driscoll, and L. Bianchi. 2008. A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans. EMBO Journal. 27(18):2388-2399.

 

Wang, Y., A. Apicella Jr., S. -K Lee, M. Ezcurra, R. D. Slone, M. Goldmit, W. R. Schafer, S. Shaham, M. Driscoll, and L. Bianchi. 2008. A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans (EMBO journal (2008) 27, (2388-2399) DOI: 10.1038/emboj.2008.161). EMBO Journal. 27(19):2638.

 

Yoshimura, S., J. I. Murray, Y. Lu, R. H. Waterston, and S. Shaham. 2008. Mls-2 and vab-3 control glia development, h/h-17/Olig expression and glia-dependent neurite extension in C. elegans. Development. 135(13):2263-2275.