Recommended Readings: Daniel Finley, Ph.D. May 30

Friday Lecture Series
Friday, May 30, 2014
3:45 p.m., Caspary Auditorium

Daniel Finley, Ph.D.
Professor
Department of Cell Biology
Harvard Medical School

Regulation of Proteasome Activity by Ubiquitin Chain Editing

Recommended Readings:

Empirical Articles

Crosas, B., Hanna, J., Kirkpatrick, D. S., Zhang, D. P., Tone, Y., Hathaway, N. a, … Finley, D. (2006). Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell, 127(7), 1401–1413. doi:10.1016/j.cell.2006.09.051

Hanna, J., Hathaway, N. a, Tone, Y., Crosas, B., Elsasser, S., Kirkpatrick, D. S., … Finley, D. (2006). Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell, 127(1), 99–111. doi:10.1016/j.cell.2006.07.038

Lee, B.-H., Lee, M. J., Park, S., Oh, D.-C., Elsasser, S., Chen, P.-C., … Finley, D. (2010). Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature, 467(7312), 179–184. doi:10.1038/nature09299

Leggett, D. S., Hanna, J., Borodovsky, A., Crosas, B., Schmidt, M., Baker, R. T., … Finley, D. (2002). Multiple associated proteins regulate proteasome structure and function. Molecular Cell, 10(3), 495–507.

Review Papers

Finley, D. (2009). Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annual Review of Biochemistry, 78(1), 477–513. doi:10.1146/annurev.biochem.78.081507.101607

Schmidt, M., & Finley, D. (2014). Regulation of proteasome activity in health and disease. Biochimica et Biophysica Acta, 1843(1), 13–25. doi:10.1016/j.bbamcr.2013.08.012

 

Recommended Readings: Hermann Steller, Ph.D May 5

Monday Lecture Series
Monday, May 5, 2014
4:00 p.m., Carson Family Auditorium

Hermann Steller, Ph.D
Strang Professor, Strang Laboratory of Apoptosis and Cancer Biology
The Rockefeller University
Investigator, Howard Hughes Medical Institute

Regulation of Protein Degradation in Development, Aging and Disease

Recommended Readings:

Empirical Articles

Bader, M., Benjamin, S., Wapinski, O. L., Smith, D. M., Goldberg, A. L., & Steller, H. (2011). A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell, 145(3), 371–382. doi:10.1016/j.cell.2011.03.021

Cho-Park, P. F., & Steller, H. (2013). Proteasome regulation by ADP-ribosylation. Cell, 153(3), 614–627. doi:10.1016/j.cell.2013.03.040

Review Papers

Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual Review of Biochemistry, 78(1), 477–513. doi:10.1146/annurev.biochem.78.081507.101607

Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological Reviews, 82(2), 373–428. doi:10.1152/physrev.00027.2001

Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews Molecular Cell Biology, 10(2), 104–15. doi:10.1038/nrm2630

Recommended Readings: Erin Schuman, Ph.D.

Friday Lecture Series

Transcriptomes and Proteomes at Synapses

Erin Schuman, Ph.D., director, department of synaptic plasticity, and professor,

Max Planck Institute for Brain Research

 March 22, 2012

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Readings

Bingol, B., & Schuman, E. M. (2005). Synaptic protein degradation by the ubiquitin proteasome system. Current Opinion in Neurobiology, 15(5), 536-541

Sutton, M. A., & Schuman, E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 127(1), 49-58

Sutton, M. A., & Schuman, E. M. (2005). Local translational control in dendrites and its role in long-term synaptic plasticity. Journal of Neurobiology, 64(1), 116-131

Sutton, M. A., & Schuman, E. M. (2009). Partitioning the synaptic landscape: Distinct microdomains for spontaneous and spike-triggered neurotransmission. Science Signaling, 2(65)

Tai, H. -., & Schuman, E. M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nature Reviews Neuroscience, 9(11), 826-838

 

Recommended Readings: David M. Smith, Ph.D.

Monday Lecture Series

The Proteasomal ATPases: Regulating a Protein Degradation Machine

David M. Smith, Ph.D.

Instructor, Department of Cell Biology

Harvard Medical School

Monday, February 9, 2009

4:00 p.m.-5:00 p.m. (Refreshments, 3:45 p.m.)

Second Floor, Welch Hall

Recommended Articles:

Smith, D. M., N. Benaroudj, and A. Goldberg. 2006. Proteasomes and their associated ATPases: A destructive combination. Journal of Structural Biology. 156(1):72-83.

Dou, Q. P., D. M. Smith, K. G. Daniel, and A. Kazi. 2003. Interruption of tumor cell cycle progression through proteasome inhibition: Implications for cancer therapy. Progress in cell cycle research. 5:441-446.
Request a PDF from the  Markus Library – email: librequest@rockefeller.edu 

Horwitz, A. A., A. Navon, M. Groll, D. M. Smith, C. Reis, and A. L. Goldberg. 2007. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in archaea. Journal of Biological Chemistry. 282(31):22921-22929.

Nam, S., D. M. Smith, and Q. P. Dou. 2001. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. Journal of Biological Chemistry. 276(16):13322-13330.

Rabl, J., D. M. Smith, Y. Yu, S. -C Chang, A. L. Goldberg, and Y. Cheng. 2008. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Molecular Cell. 30(3):360-368.

Smith, D. M., S. -C Chang, S. Park, D. Finley, Y. Cheng, and A. L. Goldberg. 2007. Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s α ring opens the gate for substrate entry. Molecular Cell. 27(5):731-744.

 Smith, D. M., K. G. Daniel, Z. Wang, W. C. Guida, T. -H Chan, and Q. P. Dou. 2004. Docking studies and model development of tea polyphenol proteasome inhibitors: Applications to rational drug design. Proteins: Structure, Function and Genetics. 54(1):58-70.

Smith, D. M., G. Kafri, Y. Cheng, D. Ng, T. Walz, and A. L. Goldberg. 2005. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Molecular Cell. 20(5):687-698.