Recommended Readings: Roy Parker, Ph.D., January 8

Friday Lecture Series
Friday, January 8, 2016
3:45 p.m., Caspary Auditorium

Roy Parker, Ph.D.
Cech-Leinwand Endowed Chair of Chemistry and Biochemistry,
Department of Chemistry and Biochemistry,
University of Colorado at Boulder
Investigator, Howard Hughes Medical Institute

mRNP Granules in Health and Disease

Recommended Reading

Empirical Articles

Buchan, J. R., Kolaitis, R. M., Taylor, J. P., & Parker, R. (2013). Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell, 153(7), 1461-1474. doi:10.1016/j.cell.2013.05.037.

Buchan, J. R., Muhlrad, D., & Parker, R. (2008). P bodies promote stress granule assembly in Saccharomyces cerevisiae. The Journal of Cell Biology, 183(3), 441-455. doi:10.1083/jcb.200807043.

Swisher, K. D., & Parker, R. (2010). Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLOS ONE, 5(4), e10006. doi:10.1371/journal.pone.0010006.

Yoon, J. H., Choi, E. J., & Parker, R. (2010). Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae. The Journal of Cell Biology, 189(5), 813-827.

Review Papers

Mitchell, S. F., & Parker, R. (2014). Principles and properties of eukaryotic mRNPs. Molecular Cell, 54(4), 547-558. doi:10.1016/j.molcel.2014.04.033.

Ramaswami, M., Taylor, J. P., & Parker, R. (2013). Altered ribostasis: RNA-protein granules in degenerative disorders. Cell, 154(4), 727-736. doi:10.1016/j.cell.2013.07.038.

Recommended Readings: Marc Tessier-Lavigne, Ph.D., April 6

Monday Lecture Series
Monday, April 6, 2015
4:00 p.m., Carson Family Auditorium (CRC)

Marc Tessier-Lavigne, Ph.D.,
President,
Carson Family Professor and Head,
Laboratory of Brain Development and Repair,
The Rockefeller University

Sculpting Neuronal Connections: The Logic and Mechanisms of Axon Growth and Pruning

Recommended Readings

Empirical Articles

Leyva-Díaz, E., del Toro, D., Menal, M. J., Cambray, S., Susín, R., Tessier-Lavigne, M., … & López-Bendito, G. (2014). FLRT3 is a Robo1-interacting protein that determines Netrin-1 attraction in developing axons. Current Biology, 24(5), 494-508. doi:10.1016/j.cub.2014.01.042

Mire, E., Mezzera, C., Leyva-Díaz, E., Paternain, A. V., Squarzoni, P., Bluy, L., … & López-Bendito, G. (2012). Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth. Nature Neuroscience, 15(8), 1134-1143. doi:10.1038/nn.3160

Romi, E., Gokhman, I., Wong, E., Antonovsky, N., Ludwig, A., Sagi, I., … & Yaron, A. (2014). ADAM metalloproteases promote a developmental switch in responsiveness to the axonal repellant Sema3A. Nature communications, 5. doi:10.1038/ncomms5058

Xu, K., Wu, Z., Renier, N., Antipenko, A., Tzvetkova-Robev, D., Xu, Y., … & Nikolov, D. B. (2014). Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science, 344(6189), 1275-1279. doi:10.1126/science.1255149

Review Papers

Kolodkin, A. L., & Tessier-Lavigne, M. (2011). Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harbor Perspectives in Biology, 3(6), a001727. doi:10.1101/cshperspect.a001727