Music Primes the Brain for Learning and Communication

Now a data-driven review by Northwestern University researchers published July 20 in Nature Reviews Neuroscience pulls together converging research from the scientific literature linking musical training to learning that spills over to skills including language, speech, memory, attention and even vocal emotion. The science covered comes from labs all over the world, from scientists of varying scientific philosophies, using a wide range of research methods.

The Nature article reviews literature showing, for example, that musicians are more successful than non-musicians in learning to incorporate sound patterns for a new language into words. Children who are musically trained show stronger neural activation to pitch changes in speech and have a better vocabulary and reading ability than children who did not receive music training.   Musical training be particularly help for children with dyslexia and other learning disabilities. 

“The effect of music training suggests that, akin to physical exercise and its impact on body fitness, music is a resource that tones the brain for auditory fitness and thus requires society to re-examine the role of music in shaping individual development, ” the researchers conclude.

Recommended Readings: Gerald Crabtree, M.D.; June 5, 2009

Friday Lecture Series

“Understanding the Words of Chromatin Remodeling”

Gerald Crabtree, M.D.

Stanford University

June 5, 2009

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Articles:

Wu, J. I., J. Lessard, and G. R. Crabtree. 2009. Understanding the words of chromatin regulation. Cell. 136(2):200-206.

 

Lessard, J., J. I. Wu, J. A. Ranish, M. Wan, M. M. Winslow, B. T. Staahl, H. Wu, R. Aebersold, I. A. Graef, and G. R. Crabtree. 2007. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 55(2):201-215.

 

Chi, T. H., M. Wan, P. P. Lee, K. Akashi, D. Metzger, P. Chambon, C. B. Wilson, and G. R. Crabtree. 2003. Sequential roles of brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity. 19(2):169-182.

 

Rando, O. J., T. H. Chi, and G. R. Crabtree. 2003. Second messenger control of chromatin remodeling. Nature structural biology. 10(2):81-83.

 

Wu, J. I., J. Lessard, I. A. Olave, Z. Qiu, A. Ghosh, I. A. Graef, and G. R. Crabtree. 2007. Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron. 56(1):94-108.

 

Olave, I. A., Reck-Peterson, S. L., and Crabtree, G. R. 2002. Nuclear actin and actin-related proteins in chromatin remodeling. Annual Review of Biochemistry. 71:755-781.

Recommended Readings: Shai Shaham, Ph.D.

Friday Lecture Series

“Adventures at the Sensory Synapse”

 Shai Shaham, Ph.D.

Associate Professor and Head, Laboratory of Developmental Genetics

The Rockefeller University

March 13, 2009

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Articles:

Bacaj, T., M. Tevlin, Y. Lu, and S. Shaham. 2008. Glia are essential for sensory organ function in C. elegans. Science. 322(5902):744-747.

 

Heiman, M. G., and S. Shaham. 2007. Ancestral roles of glia suggested by the nervous system of Caenorhabditis elegans. Neuron Glia Biology. 3(1):55-61. (Request copy of article from the Markus Library)

 

Shaham, S. 2006. Glia-neuron interactions in the nervous system of Caenorhabditis elegans. Current Opinion in Neurobiology. 16(5): 522-528.

 

Shaham, S. 2005. Glia-neuron interactions in nervous system function and development. Current Topics in Developmental Biology. 69:39-66.

 

Wang, Y., A. Apicella Jr., S. -K Lee, M. Ezcurra, R. D. Slone, M. Goldmit, W. R. Schafer, S. Shaham, M. Driscoll, and L. Bianchi. 2008. A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans. EMBO Journal. 27(18):2388-2399.

 

Wang, Y., A. Apicella Jr., S. -K Lee, M. Ezcurra, R. D. Slone, M. Goldmit, W. R. Schafer, S. Shaham, M. Driscoll, and L. Bianchi. 2008. A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans (EMBO journal (2008) 27, (2388-2399) DOI: 10.1038/emboj.2008.161). EMBO Journal. 27(19):2638.

 

Yoshimura, S., J. I. Murray, Y. Lu, R. H. Waterston, and S. Shaham. 2008. Mls-2 and vab-3 control glia development, h/h-17/Olig expression and glia-dependent neurite extension in C. elegans. Development. 135(13):2263-2275.