Recommended Readings: Charles Zuker, Ph.D. November 20

Harvey Society Lecture Series
Thursday, November 20, 2014
8:00 p.m., Caspary Auditorium

Charles Zuker, Ph.D.
Professor of Biochemistry and Molecular Biophysics and Neuroscience
Columbia University Medical Center
Janelia Senior Fellow and Investigator
Howard Hughes Medical Institute

Receptors, Neurons and Circuits: The Biology of Mammalian Taste

Recommended Readings

Empirical Articles

Chandrashekar, J., Kuhn, C., Oka, Y., Yarmolinsky, D. A., Hummler, E., Ryba, N. J. P., & Zuker, C. S. (2010). The cells and peripheral representation of sodium taste in mice. Nature, 464(7286), 297–301. doi:10.1038/nature08783

Chen, X., Gabitto, M., Peng, Y., Ryba, N. J. P., & Zuker, C. S. (2011). A gustotopic map of taste qualities in the mammalian brain. Science, 333(6047), 1262–1266. doi:10.1126/science.1204076

Huang, A. L., Chen, X., Hoon, M. A, Chandrashekar, J., Guo, W., Tränkner, D., … Zuker, C. S. (2006). The cells and logic for mammalian sour taste detection. Nature, 442(7105), 934–938. doi:10.1038/nature05084

Mueller, K., Hoon, M., & Erlenbach, I. (2005). The receptors and coding logic for bitter taste. Nature, 434(7030), 225–230. doi:10.1038/nature03366.1.

Zhao, G., Zhang, Y., & Hoon, M. (2003). The receptors for mammalian sweet and umami taste. Cell, 115(3), 255–266. doi:10.1016/S0092-8674(03)00844-4

Review Paper

Chandrashekar, J., Hoon, M. A., Ryba, N. J. P., & Zuker, C. S. (2006). The receptors and cells for mammalian taste. Nature, 444(7117), 288–294. doi:10.1038/nature05401

Recommended Readings: Robert Lefkowitz, M.D. May 9

Friday Lecture Series
Friday, May 9, 2014
3:45 p.m., Carson Family Auditorium

Robert Lefkowitz, M.D.
James B. Duke Professor of Medicine
Professor of Biochemistry
Duke University
Investigator, Howard Hughes Medical Institute

Seven Transmembrane Receptors

Recommended Readings:

Empirical Articles

Hara, M. R., Kovacs, J. J., Whalen, E. J., Rajagopal, S., Strachan, R. T., Grant, W., … Lefkowitz, R. J. (2011). A stress response pathway regulates DNA damage through β2-adrenoreceptors and β-arrestin-1. Nature, 477(7364), 349–353. doi:10.1038/nature10368

Kahsai, A. W., Xiao, K., Rajagopal, S., Ahn, S., Shukla, A. K., Sun, J., … Lefkowitz, R. J. (2011). Multiple ligand-specific conformations of the β2-adrenergic receptor. Nature Chemical Biology, 7(10), 692–700. doi:10.1038/nchembio.634

Rajagopal, S., Ahn, S., Rominger, D. H., Gowen-macdonald, W., Lam, C. M., Dewire, S. M., … Lefkowitz, R. J. (2011). Quantifying ligand bias at seven-transmembrane receptors. Molecular Pharmacology, 80(3), 367–3. doi:10.1124/mol.111.072801.

Shukla, A. K., Manglik, A., Kruse, A. C., Xiao, K., Reis, R. I., Tseng, W.-C., … Lefkowitz, R. J. (2013). Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature, 497(7447), 137–141. doi:10.1038/nature12120

Review Papers

DeWire, S. M., Ahn, S., Lefkowitz, R. J., & Shenoy, S. K. (2007). β-Arrestins and Cell Signaling. Annual Review of Physiology, 69(1), 483–510. doi:10.1146/annurev.physiol.69.022405.154749

Lefkowitz, R. J., & Shenoy, S. K. (2005). Transduction of receptor signals by beta-arrestins. Science, 308(5721), 512–517. doi:10.1126/science.1109237

Pierce, K. L., Premont, R. T., & Lefkowitz, R. J. (2002). Seven-transmembrane receptors. Nature Reviews Molecular Cell Biology, 3(9), 639–50. doi:10.1038/nrm908

Wisler, J. W., Xiao, K., Thomsen, A. R., & Lefkowitz, R. J. (2014). Recent developments in biased agonism. Current Opinion in Cell Biology, 27, 18–24. doi:10.1016/j.ceb.2013.10.008

Scripps Research Team Discovers New Details About Medically Important Protein Family

Scientists from The Scripps Research Institute have determined a new structure from a medically important superfamily of proteins. The structure should help instruct the design of a new kind of therapeutics for conditions ranging from Parkinson’s disease to inflammation.   The study, published on March 10, 2011, in Science Express provides important insights into how this large family of proteins, called G protein-coupled receptors (GPCRs), can recognize and respond to a wide array of signals, including odors, hormones, neurotransmitters, and light.