Recommended Readings: Sohail Tavazoie, Ph.D. October 6

Monday Lecture Series
Monday, October 6, 2014
3:45 p.m., Caspary Auditorium

Sohail Tavazoie, Ph.D.
Leon Hess Assistant Professor and Head,
Elizabeth and Vincent Meyer Laboratory of Systems Cancer Biology,
The Rockefeller University
Senior Attending Physician,
The Rockefeller University Hospital

Molecular Control of Cancer Metastasis

Recommended Readings

Empirical Articles

Pencheva, N., Tran, H., Buss, C., Huh, D., Drobnjak, M., Busam, K., & Tavazoie, S. F. (2012). Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell, 151(5), 1068–1082. doi:10.1016/j.cell.2012.10.028

Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2012). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380), 190–194. doi:10.1038/nature10661

Png, K. J., Yoshida, M., Zhang, X. H.-F., Shu, W., Lee, H., Rimner, A., … Tavazoie, S. F. (2011). MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes & Development, 25(3), 226–231. doi:10.1101/gad.1974211

Tavazoie, S. F., Alarcón, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., … Massagué, J. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–52. doi:10.1038/nature06487

Review Papers

Pencheva, N., & Tavazoie, S. F. (2013). Control of metastatic progression by microRNA regulatory networks. Nature Cell Biology, 15(6), 546–54. doi:10.1038/ncb2769

Recommended Readings: Christer Betsholtz, Ph.D.

Friday Lecture Series

It Takes Two to Make a Blood Vessel: Endothelial/Pericyte Interactions in Angiogenesis and Vascular Permeability

Christer Betsholtz, Ph.D., professor of vascular biology,

The Karolinska Institute

October 26, 2012

3:45 p.m.-5:00 p.m. (Refreshments, 3:15 p.m., Abby Lounge)

Caspary Auditorium

Recommended Readings

Armulik, A., G. Genové, and C. Betsholtz. 2011. “Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises.” Developmental Cell 21 (2): 193-215

Armulik, A., G. Genové, M. Mäe, M. H. Nisancioglu, E. Wallgard, C. Niaudet, L. He, et al. 2010. “Pericytes Regulate the Blood-Brain Barrier.” Nature 468 (7323): 557-561

Bell, R. D., E. A. Winkler, I. Singh, A. P. Sagare, R. Deane, Z. Wu, D. M. Holtzman, et al. 2012. “Apolipoprotein e Controls Cerebrovascular Integrity Via Cyclophilin A.” Nature 485 (7399): 512-516

Gaengel, K., G. Genové, A. Armulik, and C. Betsholtz. 2009. “Endothelial-Mural Cell Signaling in Vascular Development and Angiogenesis.” Arteriosclerosis, Thrombosis, and Vascular Biology 29 (5): 630-638

Rymo, S. F., H. Gerhardt, F. W. Sand, R. Lang, A. Uv, and C. Betsholtz. 2011. “A Two-Way Communication between Microglial Cells and Angiogenic Sprouts Regulates Angiogenesis in Aortic Ring Cultures.” PLoS ONE 6 (1)

Tammela, T., G. Zarkada, E. Wallgard, A. Murtomäki, S. Suchting, M. Wirzenius, M. Waltari, et al. 2008. “Blocking VEGFR-3 Suppresses Angiogenic Sprouting and Vascular Network Formation.” Nature 454 (7204): 656-660


The succinate receptor GPR91 in neurons plays major role in retinal angiogenesis: Findings provide a new therapeutic target for modulating revascularization

In the advance online edition of Nature Medicine investigators show that the accumulation of succinate in the hypoxic retina of rodents is a potent mediator of vessel growth via GPR91.  Effects of the receptor are mediated by retinal ganglion neurons which, in response to higher succinate levels, regulate a number of angiogenic factors including VEGF (vascular endothelial growth factor).  The observations show a pathway of signaling were succinate, acting through GPR91, governs retinal angiogenesis.

Scientists from Sainte-Justine Hospital Research Center, the Université de Montréal and the Institut national de la santé et de la rechercher médicale(INSERM) in France report provide results that imply biological functions for succinate beyond energy production.  Of therapeutic importance is that these findings have implications for halting blinding diseases such as retinopathy of prematurity in infants, diabetic retinopathy in adults or age-related macular degeneration in seniors.   There are also implications related to stopping tumor growth by interfering with the GPR91 receptor and preserving neurons after trauma by activating the GPR91 receptor to help salvage neurons in damaged brain tissue following stroke or head injuries.

The reported studies took place in animals, however GPR91 is also found in humans.  An October 7, 2008 Science Daily article reports that the research could be extended to human clinical investigations in three to four years.